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An imperfect propagation environment or optical system would introduce wavefront aberrations to vortex beams.
The phase aberrations and orbital angular momentum in a vortex beam are proved to be mutually restrictive in
parameter measurement. Aberrations make traditional topological charge (TC) probing methods ineffective while
the phase singularity makes phase retrieval difficult due to the aliasing between the wrapped phase jump and the
vortex phase jump. An interactive probing method is proposed to make measurements of the aberrated phase and
orbital angular momentum in a vortex beam assist rather than hinder each other. The phase unwrapping is li-
berated from the phase singularity by an annular shearing interference technique while the TC value is deter-
mined by a Moiré technique immune to aberrations. Simulation and experimental results proving the method
effective are presented. It is of great significance to judge the characteristics of vortex beams passing through non-
ideal environments and optical systems. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.498502

1. INTRODUCTION

An optical vortex beam has a phase singularity with orbital
angular momentum presenting helical phase fronts [1,2].
The vortex phase term lθ implies an orbital angular momen-
tum of lℏ with l being the topological charge (TC). The TC
value and phase distribution are typically the most important
indices to characterize a vortex beam. A lot of studies focus on
measuring the two characteristics but are limited to those of
approximately ideal beams or those with small aberrations.
An imperfect propagation environment or optical system
would introduce large wavefront aberrations to the vortex
beam, where measurements of both phase and TC are chal-
lenging [3].

Several methods have been developed to determine the TC
of vortex beams, such as diffraction methods [4–9], interfer-
ometry [10–18], mode transformation [19,20], and deep
learning [21]. As the most intuitive method, interference
and diffraction methods become mainstream procedures,
which include self-interference [14,18], conjugated beam in-
terference [16], multiple-pinhole interference [10,17], dou-
ble-slit interference [11], single-slit diffraction [5],
triangular aperture diffraction [4,6,9], annular aperture dif-
fraction [13], and so on. All these methods depend on the
judgment of subsequent regular intensity patterns, such as

bifurcations of interference fringes [14], 2l petals of
conjugated vortex beam interference [16], and other regular
diffraction patterns [10–17]. However, these distribution
regularities would be broken in the case of a vortex beam
of large aberrations, leading to a misdiagnosis of the TC num-
ber. The aberration sensitivity performance of traditional TC
determination examples is shown in Figs. 1(a)–1(d). The bi-
furcations of interference fringes are indiscernible in the case
of large l and large aberrations due to the hollow intensity
distribution and indistinguishable interference fringes, as
shown in Fig. 1(a). Figure 1(b) illustrates the 2l petals of
the conjugated vortex beam interference pattern. With aber-
rations, the phase flip accompanied by the TC conjugation
would break the regularities of petals, as shown in Fig. 1(b).
Figure 1(c) illustrates the results of the triangular aperture
diffraction method, in which aberrations make the original
l � 1 diffraction spots at the side of the triangle almost un-
recognizable. Deep learning methods [22,23] enabled the TC
determination of the beam with small aberrations by the sim-
ple hollow intensity image [Fig. 1(d)] and conjugated vortex
beam interference pattern [Fig. 1(b)]. However, large aberra-
tions would break the doughnut-like intensity or 2l petals dis-
tribution completely, making the TC determination difficult.
That is, the aberrations in the vortex beam make traditional
TC probing methods not applicable.
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Meanwhile, phase recovery in a vortex beam of large aber-
rations is another challenge. Different from the traditional
smooth and continuous phase fronts, the phase jump boundary
naturally exists in the helical phase fronts due to the singularity.
Interferometry provides an elegant performance with the phase-
shifting technique for pixel-level accurate phase demodulation
[24,25]. However, the wrapped phase jump and the vortex
phase jump are aliased together and unable to be distinguished,
which would lead to the failure of phase unwrapping [26]. As is
shown in Fig. 1(e), paths 1 and 2 in the wrapped phase provide
distinct different solutions for the phase jump compensation
from area A to B, respectively. That is, the phase unwrapping
would be ambiguous due to the phase jump aliasing. Pre-de-
signed unwrapping paths [26] would relieve the phase jump
aliasing but be inoperative in the case of large aberrations be-
cause the complex phase jump boundaries make the pre-design
of unwrapping paths impossible.

Therefore, we conclude that the aberrated phase and TC
restrict measurements of each other. Previous studies have fo-
cused on the respective measurement of the two characteristics,
without concerning the mutual restraint between the two mea-
surements in a beam of large aberrations. The simultaneous
recovery of the aberration phase and TC number has not been
reported previously. In this paper, we propose an interactive
probing method in a dual-interferometer structure to deter-
mine the aberration phase and TC value, which separates
the cross-impact between the two parameters. A singularity-im-
mune annular radial shearing interferometer separates the phase
unwrapping from the vortex phase jump, which makes the
phase recovery as simple as the traditional smooth phase.
With the recovered aberration phase, an aberration-immune
virtual Moiré probe is generated to determine the TC. The re-
lationship between the two characteristic measurements has
changed from being mutually restrictive to complementary.
Simulation and experimental results proving the method effec-
tive are presented.

2. PRINCIPLE

As a kind of LG beam, the electric field of the vortex beams of
aberrations can be simplified as

U � R exp�i�lθ� φ��, (1)

where R is the amplitude, and l and φ are the TC value and
phase term related to aberrations, respectively. θ is the angular
coordinate. To measure l and φ, the dual-interferometer struc-
ture employed is presented in Fig. 2, which consists of a
Twyman–Green interferometer and an annular radial shearing
interferometer [27].

The Twyman–Green interferometer is employed to acquire
the direct interferogram of the vortex beam and reference colli-
mated beam. The polarized beam splitter (PBS 1) divides the
incident vortex beam with circular polarization into two parts.
The reflected s-polarized part of the vortex beam meets the col-
limated reference beam (p-polarized) at a quarter-wave plate
(QWP). The QWP transforms the two linearly polarized beams
into the right-rotated circularly polarized (RCP) and left-ro-
tated circularly polarized (LCP) ones, respectively. A pixelated
polarizing camera (P-camera 1) is employed to capture the in-
terferogram. The P-camera is equipped with a pixelated polari-
zation mask, making four adjacent pixels have polarization
directions that differ by 45°. Therefore, four spatial phase shift
interferograms [24,25] I i �i � 1, 2, 3, 4� with π∕2 phase shift
between adjacent two would be acquired simultaneously by in-
terval pixel extraction:

I i � R2 � R2
0 � 2RR0 cos�lθ� φ� �i − 1��π∕2��, (2)

where R0 is the reference beam amplitude. Due to aberrations
in the vortex beam, the four interferograms with dense even
indistinguishable fringes are employed not for phase extraction
but for eliminating the influence of background intensity. The
purified interferogram that is insusceptible to the background
and modulation can be acquired as shown in Eq. (3):

Fig. 1. Mutual restraining of TC determination and phase recovery in a vortex beam of aberrations, in which (a)–(d) are the effect of aberrations
on TC measurements while (e) is the effect of TC on the aberration phase measurement. (a) Bifurcations of self-interference fringes, (b) conjugated
vortex beam interference patterns, (c) triangular aperture diffraction patterns, (d) hollow intensity image from which TC is determined by deep
learning, (e) phase unwrapping dilemma due to the phase jump aliasing in the vortex phase.
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I p � cos�lθ� φ� � �I 1 − I 3�∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�I 1 − I 3�2 � �I 2 − I 4�2

q
:

(3)

A. Phase Recovery with Singularity Isolation
The annular radial shearing interferometer is employed to cap-
ture the interferogram with the phase singularity influence re-
moved. The p-polarized part of the vortex beam transmitting
PBS 1 is transformed into an LCP beam again and enters into
the annular radial shearing interferometer. The shearing inter-
ferometer employs an annular beam path which makes two
beams splitting from PBS 2 travel clockwise and counterclock-
wise, respectively. With two lenses of different focal lengths (f 1

and f 2) in the annular beam path, the two reversely-propagated
beams have diameter magnification factors of s and 1/s, respec-
tively. The s � f 2∕f 1 is the so-called shearing ratio. The two
beams eventually remeet at PBS 2, with polarized directions
perpendicular to each other. The P-camera 2 is employed to
capture the shearing interferogram after the two beams travel
through a QWP. In the radial shearing interferometer, the am-
plitude and phase of the two beams are respectively expressed as
functions of the radius r and angular θ as follows:

�
E�sr, θ� � R�rs, θ� expfi�lθ� φ�sr, θ��g
E�r∕s, θ� � R�r∕s, θ� expfi�lθ� φ�r∕s, θ��g , (4)

where R�rs, θ� and R�r∕s, θ� are the amplitudes of shrunken
and expanded beams in the shearing interferometer, respec-
tively. Therefore, the shearing interferogram is then written
as

I s � jE�rs, θ� � E�r∕s, θ�j2

� A� B cos�φ�rs, θ� − φ�r∕s, θ��, (5)

where A � R�rs, θ�2 � R�r∕s, θ�2 and B � 2R�rs, θ� ⋅
R�r∕s, θ�. It can be seen from the shearing phase φ�rs, θ� −
φ�r∕s, θ� that the phase factor lθ of the vortex beam is canceled
out in the interference result, and only the aberration phase
exists. Thus, the phase jump due to the original vortex singu-
larity no longer affects the phase retrieval. The shearing phase
φ�rs, θ� − φ�r∕s, θ� can be extracted by the phase shift inter-
ferograms captured by the P-camera 2. The radial shearing
phase recovery (RSPR) algorithm [28,29] is used to iteratively
recover the original phase φ�r, θ�:

φ � φ�r, θ� � RSPR�φ�rs, θ� − φ�r∕s, θ��: (6)

B. TC Determination
With the recovered phase φ�r, θ�, we can easily get a virtual
interferogram I v with the aberration only:

I v � cos�φ�r, θ��: (7)

Then a Moiré fringe pattern is generated by the virtual inter-
ferogram in Eq. (7) and the purified interferogram in Eq. (3) as
follows:

IM � 2 · I v · I p � 2 cos�lθ� φ� cos�φ�
� cos�lθ� � cos�lθ� 2φ�: (8)

It is obvious that the vortex phase (lθ) is separated from the
aberration phase φ in the Moiré fringe pattern in Eq. (8). We
extracted the Moiré probes, the outline of cos�lθ� indicating
TC, from the mixed phase lθ� φ. The measurement of TC

Fig. 2. Principle of the interactive probing method. The system consists of a Twyman–Green interferometer and an annular radial shearing
interferometer. The two interferometers capture the purified interferogram and radial shearing interferogram, respectively. The RCP and LCP
beams before the P-cameras in the two interferometers are designed to meet the synchronous phase shift condition. The aberration phase extracted
from the shearing interferogram is used to generate a virtual interferogram. The Moiré probes then can be extracted from the product of the purified
interferogram and virtual interferogram.
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by Moiré probes does not only suffer from aberration φ but
makes use of it. With an optical wedge, a carrier phase φc

can be introduced to the incident phase φ. Equation (8) is thus
revised as

IM � cos�lθ� � cos�lθ� 2�φ� φc��: (9)

The carrier phase φc would make the term cos�lθ�
2�φ� φc�� separated from the term cos�lθ� in the frequency
domain. With a Fourier transformation for the Moiré fringe
pattern IM, cos�lθ�, as the low frequencies of IM, can be ex-
tracted immune to the influence of φ. The outline of cos�lθ�
has l petals, being the natural pointer of TC, which are called
“Moiré probe” in this paper. This process can be expressed as
follows:

ProbeM � cos�lθ� � IFTfT L�FT�IM��g, (10)

where FT and IFT refer to the operations of Fourier transfor-
mation and inverse Fourier transformation, respectively. T L de-
notes the low-pass filter operator.

The sign of the TC is determined by a simple digital phase
shifting. With the recovered I v � cos�φ�, the phase shifting
virtual interferogram can be calculated by I v � cos�φ − φi�,
i � 1, 2,…, where φi is serials of virtual phases referring to

constant matrices added artificially. It is a simple phase subtrac-
tion operation. Therefore, the Moiré probe cos�lθ� in Eq. (10)
would be changed to cos�lθ� φi� according to Eq. (8). The
new Moiré probe cos�lθ� φi� has the same petals as cos�lθ�
except for the rotation of Δθ [30]. We assume

cos�lθ� φi� � cos l�θ� Δθ� ⇒ Δθ � φi

l
, (11)

which implies that Δθ and l have the same sign in case of pos-
itive φi. Therefore, the sign of l can be determined by the sign
of Δθ. The counterclockwise rotation of the Moiré probes
would confirm the positive l with a series of incremental pos-
itive φi. The clockwise rotation refers to negative l .

3. SIMULATION

Simulation examples (l � 4) of phase recovery and TC deter-
mination by the proposed method are presented in
Visualization 1 with intermediate data, which shows the result
variations in the cases of peak-to-valley (PV) value of the in-
cident aberrations rising from 0λ to 27.7λ. Figures 3(a)–3(d)
present three groups of phase recovery results (three examples
in Visualization 1) with increasing incident aberrations in the

Fig. 3. Phase recovery and TC determination results with increasing incident aberrations. (a) Incident vortex phases with aberrations, (b) direct
interferograms with the carrier, (c) shearing interferograms, (d) recovered phases and recovered errors, (e) Moiré probes, (f ) far-field spots, (g) tri-
angular aperture diffraction spots, (h) conjugated interference petals.
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three rows. The PV values of the incident aberration in the
vortex beam in Fig. 3(a) are 0λ, 13.8λ, and 27.7λ, respectively.
With the singularity elimination effect of the shearing interfer-
ometer, the aberration phases are thus recovered with
10−4λ − 10−3λ PV errors. Visualization 2 illustrates the TC
determination results in the cases of increasing incident aber-
rations, with the comparison to traditional methods mentioned
in Section 1. Corresponding to the three aberration cases
shown in Fig. 3(a), Figs. 3(e)–3(h) present the comparison
of the TC determination results, which refer to the Moiré
probes, far-field spots, triangular aperture diffraction spots,
and conjugated interference petals, respectively. In all these re-
sults, only Moiré probes stay at a constant Moiré probe number
4, as shown in Fig. 3(e), which shows the aberration insensi-
tivity of the proposed method.

Figure 4 presents the performance of the method in the case
of different TCs and aberration types. The four-row images re-
fer to the results in the case of jl j � 1, 5, 10, 20 with different
aberrations, respectively. Figure 4(a) presents the real vortex
phases with aberrations (lθ� φ). Figures 4(b) and 4(c) refer
to the purified interferograms Ip with carrier phase and the
shearing interferograms I s (s � 0.8), which are captured by
P-cameras 1 and 2, respectively. Figure 4(d) shows phases φ
recovered from the shearing interferograms I s with the carrier
phase removed. The recovered smooth phase shows the im-
munity of the method to the phase jump of the original vortex
characteristic. The corresponding virtual interferograms I v with
carrier phase are shown in Fig. 4(e). With I v · Ip, the Moiré
fringe patterns IM and Moiré probes are illustrated in
Figs. 4(f ) and 4(g), respectively. The Moiré probes present
the accurate petal number immune to phase aberrations.
Figure 4(h) presents the recovered vortex phases, a superposi-
tion of the recovered aberration phase and the basic helical

phase. Phase recovery errors are shown in Fig. 4(i), which
provides the same accuracy as the traditional shearing phase
recovery.

The TC sign determination is simulated in Visualization 3.
According to Eq. (11), the counterclockwise rotation of the
Moiré probes would confirm the positive l with a series of in-
cremental positive φi. Otherwise, l is negative. With serials of
virtual phase φi � iπ∕3 as the digital phase shifting for phase
φ, the rotations of the four Moiré probe patterns in Fig. 4(g) are
shown in Visualization 3, with the keyframes shown in Fig. 5.
We can confirm the corresponding TC sign as l � 1, −5,
10, −20, respectively.

We then examined the resolution of our proposed method
for fractional TCs with a camera of one megapixel. A complete

Fig. 4. Simulation results of TC determination and phase recovery in the case of jl j � 1, 5, 10, 20 with different aberration types. (a) Real vortex
phases with aberrations (φ� lθ), (b) purified interferograms (I p) with carrier phase, (c) shearing interferograms (I s), (d) recovered phases (φ)
referring to aberrations, (e) virtual interferograms (I v) with carrier phase, (f ) Moiré fringes (IM), (g) Moiré probes, (h) recovered vortex phase
(φ� lθ), (i) recovered phase error.

Fig. 5. Sign determination of TC. These pictures are the keyframes
of Visualization 3 showing the obvious rotation.
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probe refers to the same angular width as others while the frac-
tional TC would induce several incomplete probes splitting
from the complete one. Figure 6 illustrates the TC estimation
simulation results corresponding to 6 ≤ l ≤ 7.

Figure 6(a) presents probe images with TC between 6 and 7
spaced 0.1 apart, which shows us the new probe splitting pro-
cess. It suggests the inaccuracy of determining the TC only by
the number of probes. The quantitative angular width of
probes or adjacent probe angular spacing can act as the new
index to describe the fractional TC. To quantify the angular
width of these petals and their septa, the gray sum curve
(GS curve) of the radial pixel along the polar angle is intro-
duced. The angular coordinate of the GS curve is the polar an-
gle from 0° to 360° and the radius coordinate is the sum of
normalized radial pixel gray at the corresponding polar angle.
Each peak of the GS curve refers to a radius of the maximum
gray sum, which implies a petal. Figure 6(b) presents the GS
curves of TC values 6–7 with 0.1 apart. Each petal splitting
represents the growth of two new petals and a new petal spac-
ing. The growing petal spacing is narrower than other complete
ones. After a lot of simulation verification, we proposed an

empirical formula to calculate the fractional part of the TC,
as a correction to simple petal counting:

l � p − 1� Δα
ᾱ

, (12)

where the p refers to the peak spacing number. ᾱ is the average
angular spacing along the polar angle. The Δα is the angular
spacing of the split probes, which is usually one of the smallest
angular spacing between all the peaks. Figure 6(c) presents
Δα and the calculated l accordingly, with the error shown
in Fig. 6(d). Specific results are listed in Table 1, which pro-
vides a maximum TC error of 0.046. Therefore, a TC resolu-
tion of less than 0.1 is achieved with a camera of one megapixel.
With more pixels, a more accurate determination is available.

4. DISCUSSION

For the Moiré probe images, the measurable maximum TC
limit depends on the pixel number of the camera. In theory,
three pixels in a circle allow two petals to be distinguished.
A camera of one megapixel has 2260 pixels counted in the
outermost circle at the sensor, promising about 1130 petals

Fig. 6. Determination of the fractional TC with a camera of one megapixel. (a) Probes with TC between 6 and 7 spaced 0.1 apart, (b) GS curves
which indicate the split process of corresponding TC probes. (c) Δα and accordingly calculated l , (d) error of TC estimation.

Table 1. Determination Results of the Fractional Part of Topological Charge with a Camera of One Megapixel

Real l 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7

Δα 4.01 10.03 17.05 22.08 28.09 33.10 38.11 42.11 47.12 52.12
l 6.078 6.195 6.332 6.429 6.546 6.644 6.741 6.819 6.916 6.999
Error −0.022 −0.005 0.032 0.029 0.046 0.044 0.041 0.019 0.016 −0.001
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counting and thus the largest measurable TC lmax � 1130.
Considering the tolerance, the largest measurable TC would
be lmax � 200 when expanding the resolution of two petals
to 12 pixels (1.91°). The Δα∕ᾱ in Eq. (12) promises the maxi-
mum resolution of the fraction part of the TC, which refers to a
different resolution value with different ᾱ due to the TC value.
With the l � 6–7, the Δα∕ᾱ promises the maximum TC res-
olution of about 1.91°∕�360°∕7� ≈ 0.04, which is basically
consistent with those shown in Fig. 6. According to
Eq. (12), the resolution of the TC would gradually decrease
with ᾱ diminution due to the TC number increase.
Figure 7(a) presents the TC resolution variations with the in-
creasing TC number. It shows us the TC resolution over 1 in
the case of l ≈ 200, which illustrates the limiting ability of TC
counting in a megapixel camera. We estimate the error perfor-
mance of TC determination in the case of l � 3–4,
10–11, 20–21, with the results shown in Fig. 7(b). Error bars
indicate that each determination was performed at five different
aberration levels. The three cases provide increasing absolute
values of the error as shown in Fig. 7(c), which verifies the con-
clusion that the resolution decreases with the increase of mea-
sured TC number. Note that the trendline in Fig. 7(c) is high in
the middle and low on both sides, which shows the larger mea-
surement error of fractional TC than that of integer TC gen-
erally. This is because the adjacent splitting probes have
adhesions in the case of fractional TC. The adhesion is preva-
lent in the adjacent splitting probes of the fractional TC,
although it is not visually obvious in some images in Fig. 6(a).
The adhesions would affect the determination of Δα and thus
the TC. The Moiré probe image of the integer TC has the larg-
est splitting probe interval and thus the smallest adhesion effect.
Thus, the determination error of the fractional TC is relatively
larger than those of the TC of integers.

Another error consideration is the system structure. Just like
diffraction methods for TC determination, the alignment of
the beam singularity and the diffraction aperture is a must
[4,17]. In our method, the beam wavefront singularity must
be aligned with the shearing center of the annular shearing
interferometer to ensure the vortex phase can be eliminated
completely by the phase shearing. Figure 8 shows the simula-
tion results of misalignment. The shearing center is generally

the center of the phase matrix by default. A new phase matrix,
truncated eccentrically from a phase matrix of a singularity at
the center, is employed to simulate the misalignment. The
incident phase with an exocentric singularity is shown in
Fig. 8(a), which implies the misalignment of the singularity
and shearing center. The purified interferogram and the shear-
ing interferogram are presented in Figs. 8(b) and 8(c), respec-
tively. The shearing interferogram shows obvious double
singularity separation due to the misalignment, which means
the phase singularity is not removed completely. Therefore,
multiple phase jumps that should not exist appear in the recov-
ered phase φ as shown in Fig. 8(d), which presents the inac-
curate recovered phase. The resulting virtual interferogram in
Fig. 8(e) shows the corresponding singularity separation as well.
However, the local detail does not affect the overall low spatial
frequency of Moiré fringes [Fig. 8(f )], whose profile refers to
the Moiré probe in Fig. 8(g). Except for center deviation, these
local phase recovery errors due to the misalignment do not af-
fect the Moiré probe number determination. Of course, the
center deviation would make the smallest probe take up fewer
pixels and thus decrease the resolution.

Even with an aligned system, the influence of the inherent
phase recovery error deserves discussion. The phase recovery in
the radial shearing interferometer has been focused on by many
researchers and the relative rms error can achieve about 1%
[27,31]. With the increasing beam aberration, the absolute er-
ror of the recovered phase rises as well. The error of the Δα in
the Moiré probes would thus be introduced and it has a positive
correlation with the absolute phase error. Therefore, the TC
determination error has a positive correlation with the absolute
phase error as well. The error performance has been simulated
as shown in Fig. 8(h), in which the rms value of the beam aber-
ration increases from 2λ to 6λ, with 1% rms errors in recovered
phases artificially added. The corresponding PV value is from
14.4λ to 42.1λ. Beams of three different TC numbers
(l � 3, 10, 15) were evaluated. From Fig. 8(h), less than
0.03 TC determination error is induced, which is far less than
the resolution of our method. Simulation shows that even if the
aberration PV value reaches 120λ, the TC error caused by the
phase recovery error in the shearing interferometer is only
about 0.09, which is still smaller than our TC measurement

Fig. 7. TC resolution analysis with a one-megapixel camera. (a) TC resolution variations with the increasing TC number, (b) error performance of
TC determination in the cases of l � 3–4, 10–11, 20–21. (c) Absolute values of the errors in the three cases.
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resolution. Aberrations of this magnitude are unusual in prac-
tice, as the beam may already be severely deformed. Therefore,
the inherent error of the radial shearing phase recovery is neg-
ligible in general measurement.

Although Moiré probes achieve aberration immunity, the
technique requires the participation of an additional reference
beam. Therefore, it cannot be applied where a reference beam is
not available. If the aberration is accompanied by the spectrum
dispersion [32,33] of the orbital angular momentum when the
beam passes through a strong random turbulence, the proposed
method may be ineffective due to multiple singularities to be
measured.

5. EXPERIMENT

We set up an experimental system to validate the proposed
method, as shown in Fig. 9(a). The system is built following
the two interferometer structures as shown in Fig. 2. The differ-
ence is that the incident vortex beam is generated by a reflective
spatial light modulator (SLM). The specific beam path is illus-
trated in Fig. 9(b). A He–Ne laser (λ � 632.8 nm) beam was
expanded to 15 mm diameter, which was reflected to an SLM

by PBS 1 and BS. The SLM from Hamamatsu Photonics was
employed to modulate the collimated beam to the vortex
beam of aberrations (the green arrow). The carrier phase
was provided by the SLM as well. As the tested beam, it
was then divided into two parts by BS 1. The two parts entered
the Twyman–Green interferometer and annular radial shearing
interferometer separately. The shearing ratio s � f 2∕f 1 �
75 mm∕80 mm � 0.9375. The P-camera employed is a
Sony IMX250MZR CMOS sensor with five megapixels.
Each interferogram has only 1.25 megapixels before interpola-
tion. It implies the maximum measurable TC number is about
200, which is comparable to the simulation.

The comparative experiments were carried out in the pre-
viously mentioned methods and the proposed method. The
SLM provided vortex beams of l � 4 with different aberra-
tions. The PV values of the incident aberration (mixture of
spherical and coma aberrations) in the vortex beam are 0λ,
8λ, and 19λ, respectively. Figures 10(a)–10(d) present the
comparison of the TC determination results, which refer to
the triangular aperture diffraction spots, far-field spots, conju-
gated interference petals, and Moiré probes, respectively. Each
set of three images corresponds to the cases of three different

Fig. 8. Simulation of TC determination and phase recovery in the case of misalignment and phase recovery error. (a) Incident vortex phases with
exocentric singularity, (b) purified interferogram, (c) shearing interferogram, (d) recovered phase referring to aberrations, (e) virtual interferograms,
(f ) Moiré fringes, (g) Moiré probes, (h) TC determination error due to 1% phase recovery error in the cases of different beam aberrations
and TC.

Fig. 9. Verification experimental setup.
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aberrations. Figures 10(a)–10(c) show us that these methods
cannot work in large aberration cases while only Moiré probes
stay at a constant number 4, which shows the aberration insen-
sitivity of the proposed method.

In another experiment, the SLM provided the vortex beams
of four different TC numbers (l � 2, 6, −10, 15) with different
aberrations. Figure 11 provides the experimental results, with
each row referring to the experiment results of different TCs.
The aberration phases generated by the SLM are presented in
Fig. 11(a), with 8.2λ, 22λ, 1 8λ, and 15λ PV corresponding
to l � 2, 6, −10, and 15, respectively. Direct interferograms ac-
quired by the Twyman–Green interferometer are presented in
Fig. 11(b). These interferograms cannot provide us with phase
and TC information. The shearing interferograms and recov-
ered phases are shown in Figs. 11(c) and 11(d). The corre-
sponding recovered virtual interferograms are presented in
Fig. 11(e), respectively. Note that the center of the recovered
phase is removed because of the phase noise caused by the hol-
low intensity distribution. The recovered virtual interferograms

are hollow as well. The Moiré fringe patterns are presented in
Fig. 11(f ) and resulting Moiré probes are shown in Fig. 11(g).
Serials of digital phase shifting make the Moiré probes rotate,
as shown in Fig. 11(g), which indicates three positive and
one negative TC numbers. From the GS curves presented in
Fig. 11(h), the TC number measurement results can be calcu-
lated with Eq. (12). The specific parameters of the recovered
phases and TCs are shown in Table 2. Compared to real phases
generated by the SLM, the relative PV error is positively corre-
lated with measured aberration phases. The largest relative PV
error is 3.4% in the case of the aberration of 22λ PV value. The
relatively large error may be introduced by the phase burrs due
to the imaging unsharpness at the edge of the interferogram.
In contrast, the relative errors for rms value are fixed at around
0.1%, which indicates that the phase recovery accuracy of
the proposed method is not affected by TC values. Meanwhile,
TC determination errors are positively correlated with the TC
number itself rather than the aberration amount, as is shown
in Table 2.

Fig. 10. Comparative experiment results with different aberrations in different methods. Each set of three images corresponds to the cases of three
different aberrations. (a) Triangular aperture diffraction spots, (b) far-field spots, (c) conjugated interference petals, (d) Moiré probes.

Fig. 11. Experiment results of TC determination and phase recovery in the case of l � 2, 6, −10, 15 with different aberrations. (a) Real aberration
phases, (b) direct interferograms with carrier phases captured by P-camera 1, (c) shearing interferograms captured by P-camera 2, (d) recovered
phases referring to aberrations, (e) virtual interferograms, (f ) Moiré fringes, (g) Moiré probes, (h) GS curves.
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Figure 12 shows the determination results of the TC num-
ber from 3.1 to 4 with 0.1 space. Except for the probe images,
the GS curves are presented as well as the calculated Δα.
According to Eq. (12), the measured TC results are calculated
and listed in Table 3. As the TC number increases at equal
intervals, the Δα increases proportionally. Errors show a trend
of being large in the middle and small on both sides, the same
trend as in Section 4.

6. CONCLUSIONS

Measurements of the wavefront phase and topological charge of
vortex beams carrying large aberrations are restricted by each
other. We proposed an interactive probing solution with a

dual-interferometer structure. The phase singularity-immune
radial shearing interferometer is employed to recover the aber-
ration phase. The phase recovery accuracy is the same as the
traditional shearing interference phase recovery in case of align-
ment. With the recovered aberration phase, the aberration-im-
mune Moiré probe is proposed to characterize the TC number.
The measured TC number would be used to complement the
vortex phase feature. The aberration and TC are proven not to
restrict measurements of each other in this method. To achieve
fine Moiré probe counting, the GS curve is employed to cal-
culate the TC (especially fractional TC) number. With a tol-
erance of 12 pixels per two probes, 0.01 resolution and a
maximum 200 measurable range of the TC number are achiev-
able with a camera of one megapixel. The measurement

Table 2. Experiment Results of Phase Recovery and TC Determination

Real l 2 6 −10 15

Phase recovery results PV (λ) rms (λ) PV (λ) rms (λ) PV (λ) rms (λ) PV (λ) rms (λ)

Real phase 8.20 1.00 22.00 3.50 18.00 2.80 15.00 2.50
Recovered phase 8.41 1.01 22.69 3.46 17.51 2.82 15.42 2.51

Measurement of l Measured l 2.024 6.061 −10.071 15.073
Error of l 0.024 0.061 −0.071 0.073

Fig. 12. Determination results of the TC number from 3.1 to 4 with 0.1 space.

Table 3. Experiment Results of Fractional TC Determination

Real TC 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

Δα 10.03 25.07 33.11 40.12 51.14 60.16 68.16 74.17 84.28 40.11
Measured l 3.114 3.279 3.368 3.446 3.568 3.668 3.757 3.824 3.936 3.999
Error of l 0.014 0.079 0.068 0.046 0.068 0.068 0.057 0.024 0.036 0.001
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accuracy of the integer TC is higher than that of the fractional
TC. The beam wavefront singularity must be aligned with the
shearing center of the shearing interferometer to ensure phase
recovery accuracy. Even in the case of misalignment, the integer
TC number can be determined accurately. Experiments
achieved measurement of maximum 22λ aberration with
0.69λ PV error in the case of l � 6 and maximum l � 20 with
0.073 TC error in the case of 15λ aberration. l � 3.1–4 was
measured as well with about 0.1 resolution. It is of great sig-
nificance to judge the characteristics of vortex beams after pass-
ing through imperfect environments and optical systems.
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